Nonparametric Bayesian Models for Machine Learning
نویسندگان
چکیده
Nonparametric Bayesian Models for Machine Learning by Romain Jean Thibaux Doctor of Philosophy in Computer Science and the Designated Emphasis in Communication, Computation and Statistics University of California, Berkeley Professor Michael I. Jordan, Chair This thesis presents general techiques for inference in various nonparametric Bayesian models, furthers our understanding of the stochastic processes at the core of these models, and develops new models of data based on these findings. In particular, we develop new Monte Carlo algorithms for Dirichlet process mixtures based on a general framework. We extend the vocabulary of processes used for nonparametric Bayesian models by proving many properties of beta and gamma processes. In particular, we show how to perform probabilistic inference in hierarchies of beta and gamma processes, and how this naturally leads to improvements to the well known näıve Bayes algorithm. We demonstrate the robustness and speed of the resulting methods by applying it to a classification task with 1 million training samples and 40,000 classes. Professor Michael I. Jordan, Chair Date
منابع مشابه
Bayesian Nonparametric Models
A Bayesian nonparametric model is a Bayesian model on an infinite-dimensional parameter space. The parameter space is typically chosen as the set of all possible solutions for a given learning problem. For example, in a regression problem the parameter space can be the set of continuous functions, and in a density estimation problem the space can consist of all densities. A Bayesian nonparametr...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملConstruction of Nonparametric Bayesian Models from Parametric Bayes Equations
We consider the general problem of constructing nonparametric Bayesian models on infinite-dimensional random objects, such as functions, infinite graphs or infinite permutations. The problem has generated much interest in machine learning, where it is treated heuristically, but has not been studied in full generality in nonparametric Bayesian statistics, which tends to focus on models over prob...
متن کاملOnline Bayesian Passive-Aggressive Learning
Online Passive-Aggressive (PA) learning is an effective framework for performing max-margin online learning. But the deterministic formulation and estimated single large-margin model could limit its capability in discovering descriptive structures underlying complex data. This paper presents online Bayesian Passive-Aggressive (BayesPA) learning, which subsumes the online PA and extends naturall...
متن کاملA nonparametric Bayesian approach toward robot learning by demonstration
In the last years, many authors have considered application of machine learning methodologies to effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of the proper number of model states, i.e. the number of model component densities. Existing meth...
متن کامل